edexcel

Mark Scheme (Results)

June 2014

GCE Chemistry (6CH04/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038322*
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (a) ~}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (b) ~}$	C		1

Question Number	Correct Answer	Reject	Mark
\mathbf{l} (c)	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (d) ~}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (e)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a)}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) ~}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (c)}$	D		1

$\mathbf{2}(\mathrm{d})$	C		

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (a)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 ~ (b) ~}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (c)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	B		1

Question number	Correct Answer	Rejecct	Mark
$\mathbf{6}$ (b)	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (c)}$	D		1

Question Number	Correct Answer	Reject	Mark
6 (d)	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (a)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 ~ (b) ~}$	D		1

Section A=20 marks

Section B

Question Number	Acceptable Answers	Reject	Mark
8(a)(i)	+104.6-[+41.4 +165] (1)		2
	$=-101.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$		
	Value, sign and unit (1)		
	Ignore SF except one		
	Internal TE allowed for recognisable numbers, for example:		
	$\Delta \mathrm{H}^{\ominus}{ }_{\text {at }}$ calcium instead of $\mathrm{S}^{\ominus}(178.2 \rightarrow-238.6)$		
	OR		
	Halving $\mathrm{S}^{\ominus}\left[\mathrm{Cl}_{2}\right](82.5 \rightarrow-19.3)$		
	Correct answer with no working (2)		
	$+/$ no sign $101.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
8 (a)(ii)	(The sign is negative because) Any two from: - (A solid and) a gas reacting to form a solid. OR (Entropy decreases because) a gas reacting to form a solid. - There are fewer ways of arranging particles in a solid than a gas or vice-versa. OR Decrease in disorder as solid more ordered than gas or vice versa - Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule) OR Number of mol(es)/molecules decreases OR Fewer/less mol(es) of products than reactants COMMENT If answer to (a)(i) is positive then answer should start 'Answer is not as expected because...' Then score as above (which can score full marks).	Energy... '(Positive) Answer is as expected...'	2

Question Number	Correct Answer1	Reject	Mark
8 (c)	ALLOW $=-795.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ Note 1. $-796=-796.1964$ (if 2570 used to calculate entropy change of surroundings first.) 2. $\begin{align*} \Delta H^{\ominus} & \left(=+\Delta \mathrm{S}_{\text {surroundings }}^{\ominus} \times 298\right) \\ & =+795.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ But $\begin{equation*} \Delta \mathrm{H}^{\ominus}=-\frac{\Delta \mathrm{S}^{\ominus} \text { surroundings }}{298} \tag{0} \end{equation*}$ Ignore SF except one		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 (d) (i)}$	$50 \times 4.2 \times 15.0$		1
	$=3150(\mathrm{~J})$ Ignore sign		
	ALLOW		
	3.15 kJ		
Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
8 (d)(ii)	$\begin{aligned} & 3150 / 0.05 \text { or } 20 \times 3150 \\ & =-63\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-63000{\mathbf{~} \mathrm{~mol}^{-1}}^{2} \end{aligned}$ Allow TE answer (d)(i) / 0.05 Ignore SF except one Value Sign The mark for the negative sign is awarded for the calculation even if the value is wrong, providing any energy divided by moles or energy multiplied by 1 / number of moles calculation has been done.		2

Question Number	Correct Answer	Reject	Mark
$\begin{array}{\|l} \hline * 8 \\ (d)(i i i) \end{array}$	The correct answer: $-380.5 /-381 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Full marks with or without correct working. First mark Appreciation of Hess's Law either in words, numbers, symbols or on the diagram For example, $\begin{align*} & \Delta \mathrm{H}_{\text {solution }}+\text { Lattice energy } \\ & =\Delta \mathrm{H}_{\text {hydration }} \mathrm{Ca}^{2+}+(2) \Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-} \tag{1} \end{align*}$ Second mark $\begin{aligned} & 2 \Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-2258-63- \\ & (-1560)=-761 \end{aligned}$ ALLOW Any number or group of numbers minus (-1560) Third mark $\Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-380.5 /-381\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Any number, wherever it has come from, divided by two can score this mark, provided that the sign is consistent. Ignore SF except one Use of lattice energy - 2223 gives -363 scores ALLOW TE from (d)(ii)		3

Question Number	Correct Answer	Reject	Mark
8(d)(v)	Both marks may be awarded in either part. First mark (Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic. OR Strong(er) forces between the $\delta+\mathrm{H}$ and Cl^{-} OR Strong(er) forces between the δ - O and Mg^{2+} OR Strong(er) ion-dipole forces OR Formation of bonds releases energy OR Strong(er) bonds formed OR Enthalpy of hydration is greater than lattice energy Second mark (Volume decreases so) shorter bonds between ion and water molecules ALLOW Water molecules more tightly arranged/pack better/occupy less space OR Water molecules more ordered/ clustered (around the ions).	The breaking of the lattice is exothermic. Ions more tightly arranged Ions more ordered	2

Total 18 marks

Question Number	Correct Answer	Reject	Mark
9 (a)(ii)	Carbonyl group - addition of 2,4-dinitrophenylhydrazine / 2,4- DNP(H) / Brady's reagent to give yellow/orange/red precipitate/ppt/ppte/solid/crystals ALLOW recognisable spelling e.g., percepitate $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ reaction with iodine in alkali/ $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-}$ ALLOW Iodoform/tri-iodomethane/haloform AND reaction/test to form (pale) yellow / cloudy precipitate/solid/crystals Ignore references to smell Ignore heat in either part Note - In both cases result mark depends on test being recognisably correct even if it did not score a mark Examples: DNP gives yellow ppt Iodine test gives yellow ppt Tests for aldehydes with correct results, no marks	2-DNP/4DNP Just DNP Brick red ppt	4

| Question |
| :--- | :---: | :--- | :--- | :--- |
| Number | Correct Answer

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (c) (i)}$	(Acid) hydrolysis OR	Hydration	1
Alkaline hydrolysis followed by acidification			

Question Number	Correct Answer	Reject	Mark
9 (b)(ii)	At low pH very few CN^{-}ions ALLOW No CN- ions OR No KCN/ only HCN present At high pH very few $\mathrm{H}^{+} / \mathrm{HCN}$ ALLOW No $\mathrm{H}^{+} / \mathrm{HCN}$ OR Hydroxide reacts with $\mathrm{H}^{+} / \mathrm{HCN} /$ acid (1)		1

Question Number	Correct Answer	Reject	Mark
9 (c)(ii)	The $\mathrm{O}-\mathrm{H}$ absorptions for alcohol and carboxylic acid overlap. OR OH absorption for an acid is very broad OR Quote data booklet values which must show some overlap, to include 3300 to 3200 . ALLOW OH absorptions similar/the same.	Just 'both have OH groups' Just 'two OH groups present'	1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (c) (i i i)}$	(Chemical shift) 2.0-4.0 (ppm) / any value within this range e.g 3.1/ 3.12/3 ALLOW Correct number followed by , eg 3δ	1	

Question Number	Correct Answer	Reject	Mark
9(c)(iv)	3 (peaks) / three		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (c) (v)}$	There is no hydrogen atom/proton on the adjacent/neighbouring carbon atom ALLOW No adjacent/neighbouring hydrogens/protons	1	

Question Number	Correct Answer	Reject	Mark		
$\mathbf{9}$ (c)(vi)	(No) 2-hydroxy-2-methylpropanoic acid does not have a chiral centre OR It is not chiral OR It does not have a mirror image which is non-superimposable OR Does not have a carbon atom attached to four different groups	Yes...		$\quad 1$	
:---					

Question Number	Correct Answer	Reject	Mark
9 (d)(i)			1
	$\left(\begin{array}{ccc} n \\ 1 \\ n-c-n \\ 1 \\ -c & c^{n} & 0 \\ 1 & n-c-n \\ 1 & 1 \\ n-c-n & 0-c-c \\ 1 & n-c-n \end{array}\right)$		
	Ester linkage		
	Rest of molecule (1)		
	ALLOW		
	Attached chains as structural formulae		
	Ignore n or other numbers outside bracket		
	COMMENT Check formulae carefully - different carbon frameworks appear.		

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (d) (i i)}$	Ester		1

Total 20 marks

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (a)}$	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+21^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$		1
	ALLOW multiples		
Ignore state symbols even if incorrect			
COMMENT			
	2 in front of sulfate is often missed.		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (b)(i)	Blue/black /blue-black	purple	1
	OR		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$			
(b)(ii)	The mixture would change colour/ go blue/black /blue-black immediately/ straight away		1
	ALLOW		
	...too quick(ly)/too early		
	...quicker		
...no time delay			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (b)(iii)	(As quickly as iodide reacts to form iodine it is) reduced/turned back to iodide by the thiosulfate ions		1
	ALLOW Persulfate reacts with thiosulfate first.		
	OR Iodine reacts with thiosulfate.		

| Question
 Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 0}$
 (c)(i) | | | |

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 10 \\ & \text { (c) (ii) } \end{aligned}$	First order This mark is independent of the graph drawn Because the graph is a straight line (through the origin)/ rate is proportional to [I°] OR As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including ' x ') OR Rate increases linearly (with concentration) OR Gradient of line is constant Second mark depends on first order	Just 'as concentration increases rate increases'	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ $\mathbf{(c) (i i i)}$	Rate $={\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]}^{\text {Units }-\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$(1)	(1)	Incorrect formulae
	TE from (c)(ii)	2	
	ALLOW		
	Units in any order Internal TE from rate equation		

Question Number	Correct Answer	Reject	Mark
10 (d)(i)	Method 1		3
	First mark		
	Gradient $=-E_{a} / \mathrm{R}$		
	OR		
	$\mathrm{E}_{\mathrm{a}}=-\mathrm{R} \times$ gradient		
	Second mark		
	$\text { (Gradient }=) \frac{-3.15-(-3.84)}{(3.20-3.31) \times 10^{-3}}$		
	OR		
	$=-6272.7(\mathrm{~K})$		
	Please award this mark if - 6272.7 is seen anywhere!		
	Method 2		
	First mark		
	Setting up two simultaneous equations		
	Second mark Subtracting one equation from the other or other correct methods of solution		
	Third mark (applies to both methods) $\begin{aligned} \left(\mathrm{E}_{\mathrm{a}}\right)= & +52126 \mathrm{~J} \mathrm{~mol}^{-1} \\ & /+52.1(26) \mathrm{kJ} \mathrm{~mol}^{-1} \end{aligned}$		
	Note: TE can only be given if either method 1 or method 2 has been clearly carried out.	Negative sign	
	Positive sign given		
	OR		
	Two negative signs clearly cancel in method and no sign given		
	Correct answer with or without working, with sign and units		
	Ignore SF unless only one		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (d)(ii)	Either Take readings at different temperatures OR Repeat at the same two temperatures ALLOW Just 'repeat the experiment'	1	

Total 14 marks
Section B = 52 marks

Section C

Question Number	Correct Answer	Reject	Mark
11(a)(i)	Purple gas/ gas turns colourless (1) to (silver/shiny) grey/black solid (1) Just gas to solid OR solid forming (1) max	Purple liquid/solid	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ (a)(ii)	First mark		2
	Heat for different lengths of time After more time/specified time eg 2 days ...		
OR	Use a colorimeter OR Set up reverse reaction Second mark Measure the concentration of a reactant or product of two tubes, which should be the same OR Colour does not change /is same	(1)	

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & * 11 \\ & \text { (b)(i) } \end{aligned}$	Equilibrium moles $\begin{align*} & \mathrm{HI} \quad \frac{30 \times 0.00353}{1000}=0.0001059 \tag{1}\\ & \mathrm{H}_{2} \text { and } \mathrm{I}_{2} \frac{30 \times 0.00048}{1000}=0.0000144 \tag{1} \end{align*}$ Initial amount of $\mathrm{HI}=0.0001059$ $\begin{aligned} & +2 \times 0.0000144 \\ = & 0.0001347(\mathrm{~mol}) \end{aligned}$ ALLOW TE from wrong moles of either or both entity Mass of 1 mol of $\mathrm{HI}=127.9$ Mass of $\mathrm{HI} \quad=0.0001347 \times 127.9$ $\begin{equation*} =0.0172 \mathrm{~g} \tag{1} \end{equation*}$ Correct answer with or without working (5) All marks stand alone Last two marks are available for any amount in moles x 127.9correctly calculated		5

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$		
(b)(ii)	Ignore state symbols unless (aq) or (s) Ignore eq or eqm		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ $\mathbf{(b) (i i i)}$	$\mathrm{K}_{\mathrm{c}}=\frac{0.00048 \times 0.00048}{0.00353^{2}}$ $=0.018489$ $=0.0185$ Allow all SF except 1		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ $\mathbf{(b) (i v) ~}$	The units cancel		1
	OR There are the same numbers of moles reactants and products		

Question Number	Correct Answer	Reject	Mark
11 (c)(i)	$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{H}_{2}{ }^{1 / 2}\left[\mathrm{I}_{2}\right]^{1 / 2}\right.}{[\mathrm{HI}]}$ Ignore state symbols unless (aq) or (s) Ignore eq or eqm	$\mathrm{p} \mathrm{H} \mathrm{H}_{2} \text { etc }\left(\mathrm{K}_{\mathrm{p}}\right)$ but not if already penalised	1

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 11 \\ & \text { (c) (ii) } \end{aligned}$	$\begin{aligned} \mathrm{K}_{\mathrm{c}}^{\prime} & =\frac{[0.00048]^{1 / 2}[0.00048]^{1 / 2}}{[0.00353]} \\ & =0.136 \end{aligned}$ Allow all SF except 1 Which is the square root of the previous value OR $K_{c}=\left(K_{c}^{\prime}\right)^{2}$ OR $\begin{equation*} 0.136^{2}=0.0185 \tag{1} \end{equation*}$		2

Question Number	Correct Answer	Reject	Mark
11 (d)	Frist mark		3
	K_{p} remains unchanged/constant	K_{p} decreases for	
	Second mark		
	(when pressure is increased) the quotient/ratio $\mathrm{p}_{\mathrm{H} 2}:\left(\mathrm{p}_{\mathrm{H}}\right)^{2}$ becomes less than Kp		
	OR		
	Ratio decreases		
	OR		
	Ratio proportional to 1/P		
	(P is total pressure change)		
	ALLOW		
	K_{p} proportional to $1 / \mathrm{P}$		
	Third mark		
	To restore the value of the quotient/ratio to Kp		
	ALLOW		
	To restore Kp		
	And		
	EITHER		
	$\mathrm{p}_{\mathrm{H} 2}$ increases / p_{H} decreases		
	OR		
	Equilibrium shifts to the right (1)		

Total 18 marks
Section C = 18 marks

TOTAL FOR PAPER = 90 MARKS

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

